By growing cells on the mirrors and imaging them using
The new technique uses the unique properties of light to create interference patterns as light waves pass through a cell on the way to the mirror and then back through the cell after being reflected. The interference patterns provide, at a single plane within the cell, significantly improved resolution in the
Microscope resolution in the X and Y axes is typically superior to resolution in the Z axis, regardless of the microscopy technique. The mirror approach works with
«This simple technology is allowing us to see the details of cells that have never been seen before," said Dayong Jin, a professor at UTS and one of the paper’s
Being able to see these tiny structures may provide new information about the behavior of cells, how they communicate and how diseases arise in them, said Peng Xi, a professor at Peking University and another of the paper’s
«Previously, the vision of biologists was blurred by the large axial and lateral resolution," he said. «This was like reading newspapers printed on transparent plastic; many layers were overlapped. By placing a mirror beneath the specimen, we can generate a narrowed focal spot so there is only one layer of the newspaper to read so that every word becomes crystal clear.»
The new system, he noted, allows scientists to see the ring structure of the nuclear pore complex for the first time, and the tubular structure of the human respiratory syncytial virus (hRSV). «With this simple, but powerful weapon, biologists can tackle many interesting phenomena that were invisible in the past because of poor resolution," Xi added.
While changing the optical system was relatively simple, growing cells on the
«Most people are not growing cells on mirrors, so it required some work to get the cell culture conditions correct," Santangelo said. «We had to make sure the mirror coating didn’t affect cell growth, and staining the cells to make them fluoresce also required some adaption. Ultimately, growing cells on the mirrors became a simple process.»
The new technique, known as
The technique improves axial resolution
For scientists attempting to study structures and molecules inside cells, the interference effects can make a dramatic difference in what can be observed.
«The two waves interacting with one another causes a region between the glass surfaces and the cell to be bright, and other parts to be dark," explained Santangelo, who is an associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. «They cause light to be removed from some locations so you get darkness, and there is a bright spot in a specific region rather than being all bright.»
Santangelo believes the technique could find broad applications for scientists using fluorescence microscopy to examine cells and subcellular structures. Further research could lead to improvements such as the ability to make the mirror’s surface movable, allowing more control over how the cells can be imaged.
«There is more to do with this," he said. «We have demonstrated a basic topic that can be applied now in other ways.»
The time differences between Australia, China and the United States provided a challenge for the team’s collaboration, but the researchers say the work was very worthwhile.
«The development of the
Source: http://www.news.gatech.edu/2016/06/16/tiny-mirror-improves-microscope-resolution-studying-cells