These latest findings, from Imperial College London researchers, are the first to show that Wars2 has a star role in driving the growth of blood vessels in the heart.
In some heart conditions, there are too few blood vessels to meet the heart’s energy demands. «If we can activate this gene, it may be possible to stimulate the growth of more vessels to treat heart disease. This would be a major step forwards," says Professor Stuart Cook, from the National Heart and Lung Institute at Imperial, and who leads the Cardiovascular Magnetic Resonance Imaging and Genetics group at the MRC Clinical Sciences Centre.
Blood vessels form a transport system that supplies the body’s tissues and organs with critical nutrients and oxygen. New vessels are constantly produced to replace those that wear out, and to create new routes or diversions. This vessel growth, creating and maintaining the body’s internal road work system, is called angiogenesis.
— Professor Stuart Cook
Study author
Angiogenesis is an intricate process that is difficult to study in beating heart tissue. The researchers therefore measured it indirectly, by monitoring blood flow through the heart. This provides an indication of the density of blood vessels, and how that is changing.
The research, which was published in the journal Nature Communications, was performed using heart tissue from rats, which are often used as a model to study heart conditions because the structure of their hearts is similar to ours. Early results also suggested that blood flow through a rat’s heart is determined by genetics, as it is in people. This makes the researchers confident that their findings will be relevant to patients.
The team identified particular rats that had reduced blood flow through the heart, an indicator of abnormally low angiogenesis, and analysed their genomes. This analysis showed that the genes which control angiogenesis are located in a particular region on the genome. They then narrowed this region down to the Wars2 gene itself.
To confirm the function of Wars2, they inhibited its action within the cells that line the vessels of the heart, in which angiogenesis takes place. This inhibition changed the cells’ shape and reduced their ability to proliferate. In this way, it directly impaired angiogenesis and reduced the number of small blood vessels, or capillaries, in the tissue.
Next the team explored the role of Wars2 in a living animal. They studied zebrafish, which have
They also inhibited Wars2 in adult fish, by adding molecules that block its action to the water in which they were kept. This reduced vessel growth throughout the fish’s upper body, or trunk, and caused fluid to build up around the fish’s heart. It was linked with early death.
Together, these results suggest that Wars2 is indeed needed for normal angiogenesis not only in the heart, but elsewhere in the body too. This builds on previous results, which have shown that a gene called VEGF (vascular endothelial growth factor) regulates angiogenesis in this way. The VEGF gene has been targeted by treatments for heart disease, which have reached clinical trials. It’s also targeted to treat certain cancers and eye diseases.
The findings may therefore have relevance beyond heart disease, according to the researchers. Wars2 has previously been associated with conditions that affect a variety of body tissues. For example, the inheritance of Wars2 has been linked to breast cancer, and the area in the genome where Wars2 sits has been associated with obesity and high blood sugar in people. Different versions of the gene could possibly be markers to predict the likelihood of a person developing a condition before symptoms develop.
Cancers and diabetic eye diseases can also hijack angiogenesis and
Source: http://www3.imperial.ac.uk/newsandeventspggrp/imperialcollege/newssummary/news_8-7-2016-9-57-9