This study, led by researchers at Columbia’s Mortimer B. Zuckerman Mind Brain Behavior Institute and Columbia University Medical Center (CUMC), was published today in Neuron.
«Our approach allows us to compare the activity of newborn and mature cells in the brains of behaving animals," said Attila Losonczy, MD, PhD, a principal investigator at Columbia’s Zuckerman Institute, assistant professor of neuroscience at CUMC and a senior author of the paper. «These findings could help scientists decipher the role that adult neurogenesis plays in both health and disease.»
«One of the great unanswered questions in neuroscience is, why did nature decide to replenish cells in this region of the brain, but not others?» said Dr. Losonczy. «In this study, we developed sophisticated and refined methods to investigate this question more thoroughly than ever before.»
Earlier studies suggested that cells within the dentate gyrus, known as granule cells, allow the brain to distinguish between similar, yet different, environments. This process, known as pattern separation, is a key component of the brain’s internal GPS. It helps us remember where we parked the car this morning, versus where we parked two weeks ago, for example.
«Most granule cells are present in the dentate gyrus from birth, but a small percentage are the result of adult neurogenesis, which churns out fresh granule cells into adulthood," said René Hen, PhD, professor of neuroscience and pharmacology (in psychiatry) at CUMC and a senior author of the paper. «We hypothesized that these
Using a
«Other studies had been unable to image the dentate gyrus, let alone the individual cells that reside within it, at this level of detail," said Mazen Kheirbek, PhD, the paper’s last author who completed this work while at Columbia. «Here, we were able to demonstrate that
The difference, the researchers found, lies in the
To determine what happens when this process is disrupted, the researchers placed the mice in one environment and gave them a small footshock. Then, they introduced the animals to a second, safe, environment that was similar, yet distinct, from the first. Using
«These findings reveal that
«Indeed, the inability to discriminate between two distinct, but similar
This paper is titled: «Distinct contribution of
This research was supported by The National Institute of Neurological Disorders and Stroke (F30 NS090819, 1U0 1NS090583, 1R01 NS094668), the National Institute of Mental Health (1R01 MH100631, K01 MH099371), the National Institutes of Health (R37 MH068542), National Institute on Aging (R01 AG043688), the Howard Hughes Medical Institute, the Canadian Natural Sciences and Engineering Research Council, the Searle Scholars Program, the Human Frontier Science Program, the McKnight Foundation, the New York Stem Cell Foundation, the Hope for Depression Research Foundation and the Brain and Behavior Foundation.