The stem cells described in this paper are the first human cells that are known to be capable of cell division with just one copy of the parent cell’s genome.
Human cells are considered ‘diploid’ because they inherit two sets of chromosomes, 46 in total, 23 from the mother and 23 from the father. The only exceptions are reproductive (egg and sperm) cells, known as ‘haploid’ cells because they contain a single set of 23 chromosomes. These haploid cells cannot divide to make more eggs and sperm.
Previous efforts to generate embryonic stem cells using human egg cells had resulted in diploid stem cells. In this study, the scientists triggered unfertilized human egg cells into dividing. They then highlighted the DNA with a fluorescent dye and isolated the haploid stem cells, which were scattered among the more populous diploid cells.
The researchers showed that these haploid stem cells were
«This study has given us a new type of human stem cell that will have an important impact on human genetic and medical research," said Nissim Benvenisty, MD, PhD, Director of the Azrieli Center for Stem Cells and Genetic Research at the Hebrew University of Jerusalem and principal
The researchers were also able to show that by virtue of having just a single copy of a gene to target, haploid human cells may constitute a powerful tool for genetic screens. Being able to affect
«One of the greatest advantages of using haploid human cells is that it is much easier to edit their genes," explained Ido Sagi, the PhD student who led the research at the Azrieli Center for Stem Cells and Genetic Research at the Hebrew University of Jerusalem. In diploid cells, detecting the biological effects of a
Since the stem cells described in this study were a genetic match to the egg cell donor, they could also be used to develop
«This work is an outstanding example of how collaborations between different institutions, on different continents, can solve fundamental problems in biomedicine," said Dieter Egli, PhD, principal
The research, supported by The New York Stem Cell Foundation, the New York State Stem Cell Science Program, and by the Azrieli Foundation, underscores the importance of private philanthropy in advancing