UCLA scientists have made a major advance in understanding the biology of schizophrenia.
Using a recently developed technology for analyzing DNA, the scientists found dozens of genes and two major biological pathways that are likely involved in the development of the disorder but had not been uncovered in previous genetic studies of schizophrenia. The work provides important new information about how schizophrenia originates and points the way to more detailed studies — and possibly better treatments in the future.
Schizophrenia is a chronic, disabling mental illness whose symptoms can include hallucinations, delusions and cognitive problems. The illness afflicts about 1 percent of the human population — more than 50 million people worldwide. Because the causes of schizophrenia are poorly understood, current medications can help diminish the symptoms but do not cure the disorder.
The study, which is published online in the journal Nature, is likely to have an impact beyond schizophrenia research because it demonstrates a general and potentially powerful new strategy for illuminating the mechanisms of human disease.
«This work provides a road map for understanding how common genetic variation associated with a complex disease affects specific genes and pathways," said principal investigator Dr. Daniel Geschwind, the Gordon and Virginia MacDonald Distinguished Chair in Human Genetics and professor of neurology and psychiatry at UCLA’s David Geffen School of Medicine at UCLA.
Schizophrenia has long been known to be highly genetic; it often runs in families. A large
In some cases, the
One possibility is that these mysterious
To investigate that possibility, Geschwind and his team used a relatively new,
Because each cell type in the body can have subtly different
The mapping revealed that most of the more than 100
The genes newly linked to schizophrenia in the study include several for brain cell receptors that are activated by the neurotransmitter acetylcholine, implying that variations in the functions of these receptors can help bring about schizophrenia.
«There’s a lot of clinical and pharmacologic data suggesting that changes in acetylcholine signaling in the brain can worsen schizophrenia symptoms, but until now there’s been no genetic evidence that it can help cause the disorder," Geschwind said.
The analysis also pointed for the first time to several genes that are involved in the
In all, the researchers identified several hundred genes that may be abnormally regulated in schizophrenia but had not been linked to the disorder before. In further experiments and analyses of two dozen of those genes, they found additional evidence of abnormal regulation in schizophrenia.
As further studies clarify the roles of these genes in schizophrenia, scientists will get a more complete picture of how the disorder develops and persists, and should then be able to develop more effective treatments.
«In the near term we’re using the findings from this study to help us understand schizophrenia better, but we’re also planning to apply this same strategy to identify key genes in the development of autism and other neurodevelopmental disorders," Geschwind said.
In principle, the
The first author of the study was postdoctoral fellow Hyejung Won. Other
The research was supported by the National Institutes of Health, the National Science Foundation, Glenn/AFAR Postdoctoral Fellowship Program and the National Research Foundation of Korea.
Source: http://newsroom.ucla.edu/releases/ucla-scientists-find-new-genetic-roots-of-schizophrenia