This breakthrough, published online today in the journal Nature, sets the stage for replacing diseased tissue in patients and opens the door to a world of regenerative medicine where doctors are able to treat human diseases that are currently incurable.
The scientists successfully used mitochondrial replacement to create an embryonic stem cell with healthy mitochondria from a patient’s skin cell containing mitochondrial DNA mutations. These mutations can cause a vast range of fatal or severely debilitating diseases, including diabetes, deafness, eye disorders, gastrointestinal disorders, heart disease, dementia, and several other neurological diseases. In the United States, 1,000 to 4,000 children are born with mitochondrial DNA disease each year. There are no meaningful treatments or cures.
In May 2013, Mitalipov was the first in the world to demonstrate the successful use of somatic cell nuclear transfer to produce human embryonic stem cells from a research subject’s skin cell. That breakthrough followed a
«To families with a loved one born with a mitochondrial disease waiting for a cure, today we can say that a cure is on the horizon. Over the past several years, we have been working to generate stem cells for use in combating disease. This critical first step toward treating these diseases using gene therapy will put us on the path to curing them," said Mitalipov. «And, unlike unmatched tissue or organ donations, combined gene and cell therapy will allow us to create the patients’ own healthy tissue that will not be rejected by their bodies.»
«This is an important advancement by Drs. Mitalipov and Ma in the quest to develop treatments and cures for those affected by mitochondrial disease," said Philip Yeske, Ph. D., Science and Alliance Officer for the United Mitochondrial Disease Foundation. «Mitochondrial replacement holds great therapeutic potential, and the patient community looks forward to further progress on the path toward clinical applications.»
This latest breakthrough overcomes a persistent stumbling block to developing stem cell therapies for human diseases. To conduct this research, the scientists collected skin cells from research subjects, mostly children and a few
Scientists aspire to use this technique to replace diseased tissue in the future by removing one cell, correcting the mutations, multiplying the cells and reinserting the genetically correct cells into the patient to replace diseased tissue. The nuclear transfer technique is more precise than classic gene therapy. Rather than inserting synthetic genes into patients delivered by viruses, nuclear transfer uses donated healthy mitochondrial genes.
«Regenerative technologies offer the prospect of transformative solutions to correct tissue defects in disease. Current care for mitochondrial diseases is limited to addressing patient symptoms, but falls short from providing a definitive cure," said Andre Terzic, M.D., Ph. D., Michael S. and Mary Sue Shannon Family Director with the Center for Regenerative Medicine at Mayo Clinic and study
«Induced pluripotent stem cell and somatic cell nuclear transfer are two complementary cell reprogramming strategies that hold great potential for patient specific cell replacement therapies," said Jun Wu, Ph. D., senior postdoctoral researcher with Izpisua Belmonte lab at the Salk Institute for Biological Studies and study
The study, «Metabolic Rescue in Pluripotent Cells from Patients with mtDNA Disease," was funded by Fondation Leducq, Mayo Clinic’s Center for Regenerative Medicine, OHSU and University of California, San Diego institutional funds. The J. Willard and Alice S. Marriott Foundation also supported this research.
Work in the laboratory of J.C.I.B. was supported by the G. Harold and Leila Y. Mathers Charitable Foundation and the Leona M. and Harry B. Helmsley Charitable Trust (
About OHSU
Oregon Health & Science University is a nationally prominent research university and Oregon’s only public academic health center. It serves patients throughout the region with a Level 1 trauma center and nationally recognized Doernbecher Children’s Hospital. OHSU operates dental, medical, nursing and pharmacy schools that rank high both in research funding and in meeting the university’s social mission. OHSU’s Knight Cancer Institute helped pioneer personalized medicine through a discovery that identified how to shut down cells that enable cancer to grow without harming healthy ones. OHSU Brain Institute scientists are nationally recognized for discoveries that have led to a better understanding of Alzheimer’s disease and new treatments for Parkinson’s disease, multiple sclerosis and stroke. OHSU’s Casey Eye Institute is a global leader in ophthalmic imaging, and in clinical trials related to eye disease.
About ONPRC
One of seven
http://www.ohsu.edu/xd/about/news_events/news/2015/07-15-ohsu-