Researchers have long known the dangers of loneliness, but the cellular mechanisms by which loneliness causes adverse health outcomes have not been well understood. Now a team of researchers, including UChicago psychologist and leading loneliness expert John Cacioppo, has released a study shedding new light on how loneliness triggers physiological responses that can ultimately make us sick.
The paper, which appears Nov. 23 in the Proceedings of the National Academy of Sciences, shows that loneliness leads to
Along with Cacioppo, the research team includes Steven W. Cole of UCLA and John P. Capitanio of the California National Primate Research Center at the University of California, Davis. The study examined loneliness in both humans and rhesus macaques, a highly social primate species. The human subjects were participants in the Chicago Health, Aging, and Social Relations Study, a longitudinal study that began in 2002 with adults aged 50–68.
Previous research from this group had identified a link between loneliness and a phenomenon they called «conserved transcriptional response to adversity» or CTRA. This response is characterized by an increased expression of genes involved in inflammation and a decreased expression of genes involved in antiviral responses. Essentially, lonely people had a less effective immune response and more inflammation than
For the current study, the team examined gene expression in leukocytes, cells of the immune system that are involved in protecting the body against bacteria and viruses.
As expected, the leukocytes of lonely humans and macaques showed the effects of
First, the researchers found that loneliness predicted future CTRA gene expression measured a year or more later. Interestingly, CTRA gene expression also predicted loneliness measured a year or more later. Leukocyte gene expression and loneliness appear to have a reciprocal relationship, suggesting that each can help propagate the other over time. These results were specific to loneliness and could not be explained by depression, stress or social support.
Next, the team investigated the cellular processes linking social experience to CTRA gene expression in rhesus macaque monkeys at the California National Primate Research Center, which had been behaviorally classified as high in perceived social isolation. Like the lonely humans, the «lonely like» monkeys showed higher CTRA activity. They also showed higher levels of the
Previous research has found that norepinephrine can stimulate blood stem cells in bone marrow to make more of a particular kind of immune
More detailed studies of the monkey white blood cells found that this difference stemmed from expansion of the pool of immature monocytes. In an additional study, monkeys repeatedly exposed to mildly stressful social conditions (unfamiliar
Finally, the researchers determined that this
Taken together, these findings support a mechanistic model in which loneliness results in
The team plans to continue research on how loneliness leads to poor health outcomes and how these effects can be prevented in older adults.
Research reported in this release was supported by the National Institutes of Health under award numbers R37AG033590, P01AG18911, R01AG034052, R01AG043404, P30AG017265, P30AG028748, R01DA024441 and P51OD011107. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
— See more at: http://news.uchicago.edu/article/2015/11/23/loneliness-triggers-cellular-changes-can-cause-