MDI Biological Laboratory Associate Professor James A. Coffman, Ph. D., is studying the regenerative capacity of sea urchins in hopes that a deeper understanding of the process of regeneration, which governs the regeneration of aging tissues as well as lost or damaged body parts, will lead to a deeper understanding of the aging process in humans, with whom sea urchins share a close genetic relationship.
In a paper recently published in «Aging Cell," a leading journal in the field of aging biology, with Andrea G. Bodnar, Ph. D., of the Bermuda Institute of Ocean Studies, the scientists shed new light on the aging process in sea urchins, raising the prospect that the physical decline that typically accompanies aging is not inevitable.
They studied regenerative capacity in three species of sea urchins with long, intermediate and short life expectancies: the red sea urchin, Mesocentrotus franciscanus, one of the earth’s
The scientists hypothesized that the regenerative capacity of the species with shorter life expectancies would decline as they aged. Much to their surprise, however, they found that regenerative capacity was not affected by age: as with the very
«We wanted to find out why the species with short and intermediate life expectancies aged and the
The MDI Biological Laboratory in Bar Harbor, Maine, is an independent, nonprofit biomedical research institution focused on increasing healthy lifespan and harnessing the natural ability to repair and regenerate tissues damaged by injury or disease. The institution develops solutions to complex human and environmental health problems through research, education and ventures that transform discoveries into cures.
Coffman and other scientists working in the institution’s Kathryn W. Davis Center for Regenerative Medicine study tissue repair, regeneration and aging in a diverse range of organisms that have robust mechanisms to repair and regenerate tissue.
The prevailing theory of the evolution of aging holds that aging is a side effect of genes that promote growth and development of organisms that have a low likelihood of continued survival in the wild once they have reproduced. Many organisms with a low expectation of survival in the wild experience rapid decline once they have reached reproductive maturity.
But Bodnar and Coffman’s findings fly in the face of that theory. They found that although the variegated sea urchin, L. variegatus, has a much lower life expectancy in the wild than the other two species they studied, it displayed no evidence of a decline in regenerative capacity with age, which suggests that senescence may not be tied to a short life expectancy in the wild.
The scientists are planning future studies to identify why
Source: https://mdibl.org/press-release/is-aging-inevitable-not-necessarily-for-sea-urchins/