The device, developed out of collaboration between the UOW based ARC Centre of Excellence for Electromaterials Science (ACES) researchers and orthopaedic surgeons at St Vincent’s Hospital, Melbourne, is designed to allow surgeons to sculpt customised cartilage implants during surgery.
Using a hydrogel
3D bioprinters have the potential to revolutionise tissue engineering -they can be used to print cells,
But in some applications, such as cartilage repair, the exact geometry of an implant cannot be precisely known prior to surgery. This makes it extremely difficult to
The Biopen special is held in the surgeon’s hands, allowing the surgeon unprecedented control in treating defects by filling them with bespoke scaffolds.
Professor Peter Choong, Director of Orthopaedics at St Vincent’s Hospital Melbourne, developed the concept with ACES Director Professor Gordon Wallace.
«The development of this type of technology is only possible with interactions between scientists and clinicians — clinicians to identify the problem and scientists to develop a solution," Professor Choong said.
The team designed the BioPen with the practical constraints of surgery in mind and fabricated it using 3D printed medical grade plastic and titanium. The device is small, lightweight, ergonomic and sterilisable. A low powered light source is fixed to the device and solidifies the inks during dispensing.
«The biopen project highlights both the challenges and exciting opportunities in multidisciplinary research. When we get it right we can make extraordinary progress at a rapid rate," Professor Wallace said.