Nanostructures from synthetic genetic polymers
‘Synthetic biology’ is a scientific approach that seeks to answer fundamental questions in biology by reconstruction and modification of the molecules and processes of life. Beyond its well-known role as the carrier of genetic information, DNA (and its close cousin RNA) have shown great promise as a nano-molecular building material: by careful arrangement of the bases A, T, C and G, DNA strands can be programmed to fold into specific 3D shapes. Work by Philipp Holliger’s group in the LMB’s PNAC Division showed that simple self-folding 3D nano-scale objects can be constructed from materials other than DNA and RNA, specifically from a series of ‘synthetic genetic polymers’, also known as xeno nucleic acids (XNAs). XNAs are composed of strings of chemical building blocks that do not occur in nature, and display a much wider range of physicochemical properties than DNA, including much higher biostability. This is the first time such ‘DNA nanotechnology’ designs have been built entirely from unnatural chemical building blocks.