Это будет новый, незнакомый и таинственный мир долголетия, а, если повезет, и здорового долголетия: ведь ключевой вопрос жизни не «сколько», а «как».
Один из учёных, кто приближает этот миг, — академик РАН, декан факультета биоинженерии и биоинформатики МГУ им.
Командой Скулачёва уже разработано лекарство, помогающее бороться со всеми видами болезней глаз: глаукомой, катарактой и сухостью глаза. Скулачёв утверждает, что уже в скором будущем ионы SkQ могут использоваться как пищевая добавка (вроде йода, который добавляют в соль для борьбы с болезнями щитовидной железы).
Свое изобретение он считает демократичным и способным, как антибиотики, изменить жизнь миллионов людей.
В съемках фильма принял участие сокурсник Владимира Петровича Владимир Познер.
Пока
Вокруг фигуры Обри ди Грея и его заявлений о возможности бесконечной жизни давно бушуют споры. Одни называют его «проходимцем от науки», другие же видят в нём спасителя человечества от старения. При этом все — и скептики, и оптимисты — постоянно приглашают его на всевозможные научные конференции и геронтологические съезды. В ноябре ди Грей в качестве приглашённой звезды побывал в России. Мы пообщались с ним, но, если честно, так до конца и не поняли, кто он: гений или шарлатан. Похоже, выяснить это позволят только результаты его работы.
[Кот Шрёдингера] Вы говорили, что с ростом продолжительности жизни не возникнет кризиса перенаселения, поскольку люди будут всё быстрее и эффективнее осваивать новые пространства на планете. Но в это слабо верится — вспомнить хоть то, как мы бьёмся за клочок городской земли, чтобы припарковать автомобиль.
[Обри ди Грей] Надо понимать, что перенаселение
Обри ди Грей — британский геронтолог, разработчик концепции SENS (strategies for engineered negligible senescence) — стратегии достижения пренебрежимого старения инженерными методами. В начале
Пренебрежимое старение — понятие, введённое в научный обиход американским геронтологом Калебом Финчем в 1990 году. Этим термином он называл способность некоторых животных (например, морского ежа, гидры или голого землекопа) оставаться молодыми и здоровыми, несмотря на возраст. К сожалению, человека природа таким свойством не наделила, поэтому учёные пытаются свести к нулю изнашивание организма искусственными способами — развивая медицинские технологии.
[КШ] Значит, будущее без старости дальше, чем хотелось бы… Но всё же вы не видите проблемы в перенаселении, а она явно есть и быстро решена не будет, к сожалению.
[ОГ] Ну, я бы так не сказал. В Китае, например, недавно отменили ограничения на количество детей в семье. Тут дело вот в чём: технологии, которые постепенно развивают люди — солнечная энергетика, электромобили, искусственная пища, — приведут к меньшему расходу конечных ресурсов. А значит, станет возможно обеспечить этими возобновляемыми благами большее количество людей. Чтобы выросшему населению было где жить, человечество освоит новые территории — с помощью наших пионерских разработок. Останавливать ход прогресса, жалуясь, что приходится сталкиваться с большим количеством трудностей, — сумасшествие!
[КШ] А если лет через пятьдесят мы так и не сможем достичь того уровня прогресса, который бы позволил не ограничивать себя ни в чём?
[ОГ] Очень пессимистичное суждение. Но хорошо, предположим, что человечество не смогло. Тогда всё равно у нас будет выбор, пусть даже не очень приятный: иметь меньше детей или позволить уже существующим людям жить долгой здоровой жизнью. Конечно, это ужасный выбор, настоящая жертва. Но очнитесь! Разве сегодняшняя ситуация лучше: тысячи человек каждый день отправляются к праотцам после тяжёлых болезней, после телесных и душевных страданий?!
[КШ] Вряд ли это убедит женщину, мечтающую о ребёнке, в том, что не нужно рожать.
[ОГ] Я бы сказал ей: «Укажите того, кому вы готовы подписать смертный приговор в обмен на рождение нового человека!»
Фото: SHARE conference/flickr.com / На многих геронтологических конференциях выступления Обри ди Грея ждут как выхода на сцену
[КШ] Какова будет продолжительность жизни, если мы научимся бороться со старением?
[ОГ] Мы с коллегами исходим из того, что ограничений не существует. Уже через 20–25 лет мы должны суметь взять процесс старения под контроль: риск смерти перестанет расти по мере увеличения возраста. Сегодня такой риск повышается для каждого человека на 10% ежегодно. Скажем, в 67 лет риск умереть на 10% выше, чем в 66. Наша задача — чтобы в 67 этот риск был таким же, как, к примеру, в 26, когда вероятность, что ты не дотянешь до 27, меньше одной тысячной. Таким образом, большинство людей смогут прожить хотя бы тысячу лет — это простой математический расчёт.
[КШ] Есть ли в таком случае
[ОГ] Сегодняшние пределы функционирования нашего организма связаны с отсутствием подходящей медицинской поддержки. Тело — это машина, состоящая из подвижных частей. И, как автомобиль, тело изнашивается и полностью восстанавливается.
[КШ] Как повысить запас прочности так, чтобы его хватило на очень длительное время?
[ОГ] Снова воспользуемся аналогией с автомобилями. Если вы заглянете в
[КШ] Вы хотите сказать, что мы сможем бесконечно обновлять и сохранять своё тело… Неужели даже кожу будем заменять?
[ОГ] Конечно! Почему бы нет?!
[КШ] Свой автомобиль я отдаю в мастерскую, чтобы заменить некоторые детали. А если поменяют несколько дверей, капот, двигатель — это будет уже не совсем моя машина… Так и человек, полностью обновлённый, станет уже не тем.
[ОГ] Да бросьте! Всё чушь собачья. Если вам нравится так думать, ваше дело, конечно. Но мне кажется, что, когда вам понадобится помощь и вас вылечат с помощью новых органов, вы будете довольны. Я не хочу разводить философию, это такое занудство. Я практичный человек, и меня интересуют конкретные задачи. Ну, давайте ещё порассуждаем о детстве. Например, когда мне было 10 лет, я, очевидно, был несколько иным — по внешности, мыслям, интересам. Я даже не любил пиво! Что с того?! А когда мне стукнет тысяча, я, может, очень полюблю кетчуп. Да, мы меняемся — это часть нашего развития. Большинство атомов, из которых сейчас состоит ваше тело, 10 лет назад вам не принадлежали.
[КШ] Нет ли риска, что, получив в своё распоряжение вечную жизнь, мы станем слишком беззаботными, жестокими, бесцельными? У нас же всегда будет второй шанс…
[ОГ] Я не занимаюсь бессмертием — я лишь пытаюсь сделать так, чтобы все были здоровы. Если у нас с коллегами получится, люди, естественно, будут жить дольше. Но никуда не денутся автомобильные аварии, авиакатастрофы, стихийные бедствия, эпидемии — значит, и понимание конечности бытия тоже не исчезнет.
[КШ] С этим, пожалуй, не поспоришь. Тогда скажите, какие технологии продления жизни вы считаете наиболее перспективными?
[ОГ] Большая часть медицинских услуг будет связана с терапией на основе применения стволовых клеток: ими будут заменять изношенные клетки различных тканей организма, которые он сам восстановить не в состоянии. С этой проблемой связаны многие страшные заболевания, в частности болезнь Паркинсона. Другая важная технология — генная терапия. Часто здоровье оказывается под угрозой, поскольку пациент генетически не может противостоять болезни. Медики будут искать такую способность у других видов животных и вводить их гены в клетки человека. Ещё один путь — иммунная терапия, стимулирование иммунной системы. Технологий много, как и вызовов нашему здоровью. Поэтому в своём фонде SENS мы создали классификацию основных типов повреждений при старении и способов их устранения.
[КШ] А какую роль вы отводите ремонту тела с помощью роботизированных протезов?
[ОГ] Думаю, число разработок наподобие искусственного сердца, глаза, руки будет расти, но приоритет останется
[КШ] Люди должны будут проходить профилактическое медобслуживание с использованием новых технологий или обращаться по мере возникновения неполадок?
[ОГ] Думаю, это будет комбинированный процесс. Но начинать лучше в среднем возрасте, лет в сорок — пятьдесят. В детстве обычно со здоровьем всё в порядке. Однако и ждать слишком долго, пока не начнётся тяжёлое заболевание, опасно.
[КШ] А как вы сами продляете свою жизнь? Говорят, вы живёте с тремя женщинами — может быть, в этом кроется один из секретов вечной молодости?
[ОГ] Да, живу. Но вряд ли это панацея от старения. Вообще, я мало сплю, веду не самый здоровый образ жизни и скорее как раз сокращаю срок своего благополучного существования. Однако я поддерживаю исследования, которые только что перечислил, и надеюсь, что их результаты помогут и мне.
[КШ] Как долго вы хотели бы прожить?
[ОГ] Не знаю, захочу ли я на самом деле прожить тысячу лет. Но я хочу, чтобы у меня была возможность выбирать, когда умереть.
Человеческий геном включает примерно 3,5 миллиарда нуклеотидов. Можно про него думать как про такой длинный текст длиной в 3,5 миллиарда букв. Каждая буква записана на некотором четырехбуквенном алфавите из, А, Т, Г и Ц, и такой текст примерно в тысячу раз длиннее, чем «Война и мир» Льва Толстого. Дальше можно задать вопрос: какая доля из этих букв действительно важна на своем месте, какая из них несет функцию, а какая неважная и можно их заменить на другие? На этот вопрос можно отвечать
Недавно — если мне не изменяет память, в 2012 году — был завершен проект ENCODE — большой проект по функциональной аннотации генома человека. По результатам этого проекта авторы сказали, что 80% генома человека несут функцию. Это число было воспринято в штыки представителями сообщества эволюционных генетиков, потому что мы, эволюционные генетики, давно знаем, что важными не могут быть в геноме больше 10% нуклеотидов. Все остальное — это то, что можно смело называть «мусорной ДНК», то есть это ДНК, которая, возможно, для
Совсем не любое участие в биохимической активности означает, что этот участок генома для
Мы знаем, что виды отличаются друг от друга разными признаками, в том числе и адаптивными. В чем генетическая основа адаптации и, главное, сколько этой генетической основы? Существует
Почему так? Когда мы ищем быстро эволюционирующие гены, мы ищем те гены, которые быстро эволюционируют постоянно, то есть эволюционировали ускоренно в течение всех 8 миллионов лет, которые мы прожили со времен нашего общего предка с шимпанзе. Почему так? Совсем необязательно размер нашего мозга увеличивался непрерывно в течение нашей эволюции. Возможно, было всего несколько мутаций в небольшом числе генов, которые делали наш мозг больше.
Эти мутации мы таким тестом не найдем, потому что редкие адаптивные полезные мутации будут происходить в генах, которые были функциональны, для
Очевидно, нужны
Можно пытаться разными способами оценивать, какая доля замен в нашей недавней эволюции реально была адаптивной. И удивительным образом здесь до сих пор не пришли к консенсусу. В течение всего XX века доминировала дарвинистская парадигма, считалось, что бо́льшая часть того, что происходит, для
Но даже после того, как мы оценили, узнали, сколько именно замен важны, а сколько неважны, остается важный вопрос, к чему, собственно, являются эти замены адаптациями. Мы знаем для отдельных единичных замен, что они являются адаптациями к тому или иному изменению среды, но для подавляющего большинства, для миллионов из этих замен, которые, как мы думаем, были адаптивны, например, у дрозофилы, мы близко не понимаем, к чему они адаптировали эту муху. Возможно, это были адаптации тоже к
Источник: http://postnauka.ru/video/57652
Биолог Георгий Базыкин о возникновении эпидемий гриппа, причинах эволюции вируса, поисках универсальной вакцины и опасности штамма свиного гриппа (H1N1)
Люди умирают
Одна из самых страшных инфекций — это самый обычный грипп. Ежегодно он уносит около 250 тысяч жизней, а в отдельные годы гораздо больше. Самая масштабная из известных эпидемий гриппа — знаменитая испанка 1918 года, погубившая несколько процентов населения Земли.
Как и любой биологический объект, каждый вирус непрерывно изменяется в результате происходящих в его геноме мутаций. Вирус гриппа — один из довольно быстро изменяющихся вирусов. Одна из причин — то, что его генетическая информация кодируется молекулами РНК, а не ДНК, как, например, наш геном; РНК — легко мутирующая молекула. Другая причина — на вирус непрерывно действует отбор: многие из происходящих в его геноме мутаций оказываются для него «полезными», позволяя эффективнее передаваться, например, между людьми.
Помимо постепенного антигенного дрейфа, эволюция вируса гриппа характеризуется также антигенными сдвигами — радикальными изменениями свойств вируса, которые обычно связаны с реассортацией. У вируса гриппа геном записан на восьми отдельных сегментах, немного напоминающих человеческие хромосомы. Когда клетка хозяина заражается одновременно двумя вирусными частицами двух разных штаммов, эти сегменты могут перемешаться, и может возникнуть новая вирусная частица с новыми свойствами, состоящая отчасти из сегментов одного родительского штамма и отчасти — другого. Такие реассортантные штаммы часто отличаются по свойствам от родительских штаммов и иногда приводят к большим эпидемиям. Все крупнейшие пандемии ХХ века, о которых мы знаем, — пандемии
Предсказуема ли эволюция гриппа? В краткосрочной перспективе — да. Недавние научные работы показывают, что можно отчасти предсказать будущую эволюцию вируса, если знаешь о его предыдущей эволюции. Можно, как любят эволюционисты, построить эволюционное дерево. Причем у обычного вируса гриппа, А оно имеет очень характерную форму: это отдельный ствол, от которого отходят коротенькие веточки. Когда вы видите дерево такой формы, вы почти всегда можете быть уверены, что имеете дело с патогеном. Есть
Для того чтобы хотя бы примерно понять, глядя на разнообразие текущего года, какой из наблюдаемых в текущем году штаммов даст эпидемию в следующем году, надо смотреть на то, какими мутациями отличаются штаммы друг от друга. Если вирус накопил большое количество мутаций в своих эпитопах, то есть в тех местах своих поверхностных (торчащих наружу) белков, которые «видны» иммунной системе, то, скорее всего, он для иммунной системы будет незаметен, а потому с большой вероятностью эффективен. Наоборот, если у него были
Предсказывать долгосрочную эволюцию вируса, в том числе антигенные сдвиги, гораздо сложнее. Как минимум для этого надо научиться понимать, какие именно из ныне наблюдаемых штаммов дадут реассортант, который может привести к следующей серьезной эпидемии. Такого рода предсказания мы делать совсем не умеем, потому что здесь очень много привходящих факторов. Здесь важно смотреть, с кем больше взаимодействует человек, важно пытаться предсказывать, какие именно штаммы с большей вероятностью легче «научатся» передаваться от человека к человеку.
Эпидемии могут вызывать штаммы, присутствовавшие в популяции раньше. Например, текущая эпидемия 2016 года вызвана вирусом гриппа, впервые замеченным у людей в 2009 году. Однако обычно самые серьезные эпидемии вызываются штаммами, новыми для человека. Чтобы случилась такая эпидемия, должно произойти несколько событий. В
В этом году около двух третей всех случаев гриппа вызываются пандемическим штаммом H1N1 2009 года, известным под именем «свиной». Этот вирус действительно был,
От гриппа существует довольно эффективная вакцина. Но проблема в том, что она все время устаревает, поскольку каждый год вирус эволюционирует, изменяя свои антигенные свойства и становясь снова незнакомым для нашей иммунной системы. Вакцину в результате приходится постоянно обновлять. Каждый год специалисты из Всемирной организации здравоохранения (ВОЗ) рекомендуют всем производителям новый состав так называемой трехвалентной вакцины, перечисляя те три штамма, которые должны быть в нее заложены. Лучше всего трехвалентная вакцина защищает именно от них. Хотя, конечно, существует перекрестный иммунитет, и от штаммов, похожих по антигенным свойствам на эти три штамма, она будет защищать тоже неплохо. Тем не менее прививаться от гриппа нам рекомендуют каждый год, и это правильно. Трехвалентная вакцина этого года включает в себя H1N1/09, так что те, кто прививался осенью, сейчас, скорее всего, в выигрыше. Прививка не гарантирует, что вы не заболеете, но снижает вероятность этого.
Предсказания того, как именно пойдет эволюция гриппа, были бы менее актуальными, если бы мы научились делать универсальную вакцину, защищающую от всех штаммов. Пока такой вакцины нет, хотя несколько кандидатов проходят клинические испытания. Сложность в том, что иммунной системе «видны» как раз те поверхностные белки вируса (гемагглютинин и нейраминидаза), которые вирус легко и безболезненно для себя может изменить. Поэтому вакцинацией трудно объяснить иммунной системе, во что ей, собственно, необходимо целиться.
Была нашумевшая работа одной группы из Голландии и группы из Японии, где исследователи пытались вручную синтезировать штамм птичьего гриппа, который был бы способен передаваться между млекопитающими. Это им удалось. Их работа считалась этически спорной, потому что все боялись, что синтезированный штамм может «убежать» из лаборатории, что его гены не стоит выкладывать в открытый доступ, потому что