Со временем кардиостимуляторы становились всё меньше, а электроды с проводками стало возможным вводить в сердце с помощью катетера просто через вены. Однако каким бы маленьким ни был стимулятор и какими бы тонкими ни были его провода, ему всё равно нужно менять батарейки, а это означает неизбежную операцию, пусть и небольшую. Кроме того, проводки с электродами, тянущиеся к сердцу, могут изнашиваться, и время от времени их тоже нужно менять. С другой стороны,
Уди Нусинович (Udi Nussinovitch) и Лиор Гепстейн (Lior Gepstein) из Израильского технологического института Технион предложили своеобразную модель кардиостимулятора, у которого нет ни проводов, ни электродов, ни батареек и который работает в буквальном смысле на свету (The Illuminated Heart). По сути, никакого стимулятора в виде внешнего устройства тут вообще нет — исследователи ввели в клетки сердца оптогенетическую модификацию, что и позволило управлять сердечными сокращениями. Общий смысл оптогенетических методов в том, что в клетку внедряется ген светочувствительного белка — такой белок, встроившись в клеточную мембрану, в ответ на световой импульс открывает в мембране ионные каналы. А как мы знаем, именно перераспределение ионов с обеих сторон мембраны и создаёт электрохимический импульс. Оптогенетика нашла широчайшее использование в нейробиологии: внедрив в нейрон светочувствительный белок, мы можем произвольно, с помощью световых сигналов, генерировать сигнал в цепочке нейронов.
Но ведь и сердечный ритм зависит от электрохимических импульсов (напомним, что, хотя в сердце и есть волокна вегетативной нервной системы, некоторые особенные клетки миокарда могут сами генерировать ритмические сигналы, формируя так называемую проводящую систему сердца). И ничто не мешает внедрить оптогенетический механизм в сердце.
Исследователи так и сделали: с помощью специального «одомашненного» вируса они внедрили в желудочки сердца крыс водорослевый светочувствительный белок ChR2 (
Чтобы «включить» оптобелок, не нужно никаких электродов: синий свет снаружи, хотя и довольно плохо проникает сквозь живые ткани, всё же может дойти до сердца. Но — только если речь идёт о крысе. У мало—мальски крупного животного, не говоря уже о человеке, сердце лежит глубже, так что здесь нужно подумать о том, световая волна какой длины сможет до него добраться и, соответственно, какой понадобится светочувствительный белок. Здесь могли бы подойти красные и инфракрасные области спектра, и, если дело дойдёт до экспериментов с приматами, именно такие волны и будут использовать.
Стоит заметить, впрочем, что есть и другие подходы к созданию беспроводного кардиостимулятора. Около года назад мы писали о разработке сотрудников Стэнфордского университета, которые предложили поддерживать работу ритмоводителя с помощью генератора электромагнитных волн, расположенного просто на поверхности тела. Другая идея принадлежит исследователям из Иллинойсского университета в
(Стоит заметить, впрочем, что год назад коллеги изобретателей этого вычурного метода, потренировавшись на морских свинках, проверили на свиньях метод прямого превращения кардиомиоцитов в клетки, генерирующие электрические импульсы. И представьте, что будет, если у нагрудного лазера неожиданно сядет батарейка… Так что работа, несомненно, изящная, но дойдёт ли она до внедрения, сомнительно — ВМ.)
Портал «Вечная молодость» http://vechnayamolodost.ru со ссылкой на «Наука и жизнь», автор Кирилл Стасевич