Перевести на Переведено сервисом «Яндекс.Перевод»

Growing of tissues and organs

Description

Developers

A. Atala, K. Uygun, L. Niklason, Y. Nakajima, H. Keirstead etc.

Description of the technology

Many diseases, including those endangering human life, are associated with malfunction of specific organ (for example, renal insufficiency, impaired cardial function, diabetes mellitus etc.). However, those disorders may not always be corrected using traditional pharmacological or surgical interventions. One of the alternative ways of organ function restoration is replacement of the patient’s organ by an artificially grown one.

In order to grow an artificial organ, a framework made of biocompatible materials is sown with cells. Most often stem cells are used, however, differentiated cells can also be used. The organ being grown is placed into a special incubator which imitates conditions in the human organism. In that incubator, cells grow and establish connections among themselves.

Natural and artificial materials are used to create frameworks. Firstly, frameworks having a xenogenous origin are used for organ growing. Essentially, they are mammalian connective tissue released from cells through decellularization. Secondly, frameworks may be created on the basis of various natural polymers including chitosan, silk, fibrin, spongin. Moreover, various artificial polymer materials are widely used in tissue engineering. There are such materials as: 1) artificial polymer nanofibers (they imitate properties of tendon collagen fibers); 2) nanospheres with polymer synthetic additives (they are used to create bioceramic dental implants); 3) porous microspheres (they are used to create bone implants) and 4) porous hydrogels.

Up to date, substantial success has been achieved in growing not only the simplest tissues, such as the skin and bones, but also quite complex ones, such as the bladder or trachea. Technologies for growing the most complex organs (like heart, liver, eye etc.) are still under development.

Practical application

The technology of organ growing in vitro with subsequent transplantation into the body unable to regenerate independently has a huge potential for treatment of various diseases including age-dependent, such as diabetes mellitus, cardiovascular pathologies, osteoporosis, macular degeneration etc.

Beside of use in the transplantology, such organs may be used, for example, for drug testing, substituting some experiments on laboratory animals.
This technology is in the market already.

Laboratories

  • Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina (USA)
  • Medical Research Council centre for regenerative medicine, The University of Edinburgh, Edinburgh (Great Britain)
  • Yale University, New Haven, Connecticut (USA)
  • Sahlgrenska Academy at University of Gothenburg, Göteborg (Sweden)
  • RIKEN, Wako, Saitama Prefecture (Japan)

Links

http://kriorus.ru/content/Vyrashchivanie-organov-dostizheniya-i-perspektivnye-issledovaniya-Obzor-2012
http://www.regmedgrant.com/files/review1_rus.pdf
http://moikompas.ru/compas/stvol_kletki
http://www.smithsonianmag.com/40th-anniversary/organs-made-to-order-863675/?no-ist
http://ngm.nationalgeographic.com/2011/03/big-idea/organ-regeneration-text

Publications

  • Atala, Anthony, et al. «Tissue-engineered autologous bladders for patients needing cystoplasty." The lancet 367.9518 (2006): 1241–1246.
  • Ohashi, Kazuo, et al. «Engineering functional two-and three-dimensional liver systems in vivo using hepatic tissue sheets." Nature medicine 13.7 (2007): 880–885.
  • Uygun, Basak E., et al. «Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix." Nature medicine 16.7 (2010): 814–820.
  • Агапов, И. И., et al. „Биодеградируемые матриксы из регенерированного шелка bombix mori." Доклады Академии наук. Vol. 433. No. 5. Академиздатцентр“ Наука» РАН, 2010.
  • Petersen, Thomas H., et al. «Tissue-engineered lungs for in vivo implantation." Science 329.5991 (2010): 538–541.
  • Bredenkamp, Nicholas, et al. «An organized and functional thymus generated from FOXN1-reprogrammed fibroblasts." Nature cell biology 16.9 (2014): 902–908.