Профессор MIT Роберт Лэнгер о способах формирования новых тканей, полимерных каркасах и использовании компьютерных технологий в биологии
ПостНаука в партнерстве с Российской венчурной компанией и Serious Science публикует для вас на русском языке лекции ведущих западных ученых, рассказывающих о главных направлениях исследований мировой науки.
Тканевая инженерия во многом началась с исследований, проведенных много лет назад мной и Хавьером Конте, возглавляющим сейчас отделение детской хирургии в госпитале Массачусетса. Помимо нас в нем участвовало еще много людей. Основная идея тканевой инженерии заключается в комбинировании материалов и клеток млекопитающих, в том числе стволовых, чтобы сформировать новую ткань или орган. Существует несколько стратегий, над которыми мы работаем вместе с другими учёными.
Одна из стратегий, возможно, способная помочь в борьбе с диабетом, заключается в следующем: вы берете, скажем, инсулярные клетки и помещаете их в капсулу из специального материала, предотвращая тем самым иммунное отторжение. Итак, для данного способа вам потребуется специальный материал, например альгинат, или
Однако с этим методом могут возникнуть сложности: в некоторых случаях вокруг микрокапсул образуется фиброзная оболочка, препятствующая прохождению инсулина и глюкозы. Посему мы с Дэном Андерсоном сделали одним из основных направлений работы нашей лаборатории создание супербиосовместимых материалов, как я их называю, которые не будут заключены в капсулу. Сейчас мы, совместно с Фондом исследований в области сахарного диабета у подростков, проводим эксперименты над приматами, чтобы протестировать результаты. Это был пример уже существующего и применяемого материала.
Следующее направление в тканевой инженерии — это полимерные каркасы, которым можно придать любую форму. На них можно помещать клетки, и как только они оказываются там, они самоорганизуются, образуя новую ткань или орган. Это может быть хрящ, кость, новая кожа для пострадавших от ожогов или пациентов с диабетическими язвами. Для этого необходимо сделать следующие вещи: первое — это создание материалов, к которым можно прикрепить клетки, и второе — это создание конструкции подходящей формы и структуры. Например, при создании хряща можно придать ему форму носа или уха, в зависимости от ваших целей. Или Вы можете также придать полимеру определенные свойства, такие как эластичность. И тогда клетки помещаются на полимерные каркасы, выращиваются и превращаются в ткань. Уже сейчас эта технология используется для создания кожи взамен обожженной, создания объектов разных клинических испытаний, в числе которых хрящи, роговицы, и даже, возможно, для восстановления спинного мозга. Однако это сфера имеет очень широкое применение.
Вопрос материалов остро встает во многих из этих областей, и с точки зрения химии, и с точки зрения производства. Говоря о химии, я просто перечислю ряд потенциально полезных материалов, которые мы — и ещё целый ряд ученых — пытаемся создать. Первый: биосовместимый материал, способный к соединению при помощи ионных связей — для решения проблемы диабета. Второе: материалы с определенными аминокислотами, обращенными вовне. Они пригодятся для присоединения некоторых видов клеток, например нейронов. Третье: материалы с требуемой эластичностью, необходимые для некоторых частей нашего тела, таких как кровеносные сосуды, которые очень эластичны. Четвёртое: материалы, позволяющие клеткам, в том числе стволовым, дифференцироваться, то есть превращаться в любой нужный тип клеток. Есть еще ряд других химических проблем, связанных с материалами.
Существуют также проблемы производства: как придать нужную форму, нужную структуру. Для решения некоторых из них используется целый ряд техник.
Например, в последнее время большое внимание получила 3D печать, поскольку она позволяет создавать очень сложные конструкции, но ей дело не ограничивается.
Есть много других способов создания структур, волокон и наноструктурных систем. Так что есть ещё много нерешенных задач и проблем по части материалов — как химических, так и производственных.
Одна из самых важных таких проблем- это вопрос безопасности материала, но при работе с инновационными химическими решениями её можно подтвердить только путем тестирования.
Я бы сказал, тканевая инженерия в этом плане наука больше экспериментальная, чем теоретическая. То есть, конечно, есть теоритические работы, но нет еще полного понимания, как вырастить ткань или орган, поэтому ставится много экспериментов с различными материалами, типами клеток, способами их выращивания, эксперименты на животных, иногда — на людях. Мне кажется, мы не может обойтись уже существующим объемом теоретических знаний в этой области, поэтому приходится столько экспериментировать. Возьмем иммунное отторжение или почему образуется фиброзная оболочка. Мы просто многого не знаем, или недостаточно много знаем о причинах и механизмах таких явлений. Да, я бы сказал, к сожалению, наши знания скудны. А если так, то нам приходится полагаться на эмпирическое познание.
Давайте рассмотрим инкапсуляцию клеток поджелудочной железы. Главная проблема с ними состоит в том, что если заключить клетки в полимерную оболочку, то возникнет реакция тканей, а это серьёзная проблема, поскольку она препятствует прохождение молекул в капсулу и из нее. Так что даже если инсулин будет производиться, он останется в капсуле. Так что нам нужен материал, который обладает высокой биологической совместимостью (и не вызывает реакции тканей), либо
Тканевая инженерия — многообещающая область исследования, есть огромное количество болезней, не поддающихся медикаментозному лечению, и если получится помочь людям с заболеваниями печени или диабетом, или восстановить их спинной мозг, это будет настоящий прорыв. На мой взгляд, то, что сейчас происходит в науке,